首页> 外文OA文献 >A Weak Dynamic Programming Principle for Combined Optimal Stopping and Stochastic Control with $\mathcal{E}^f$- expectations
【2h】

A Weak Dynamic Programming Principle for Combined Optimal Stopping and Stochastic Control with $\mathcal{E}^f$- expectations

机译:组合最优停止与弱的动态规划弱原理   随机控制与$ \ mathcal {E} ^ f $ - 期望

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study a combined optimal control/stopping problem under a nonlinearexpectation ${\cal E}^f$ induced by a BSDE with jumps, in a Markovianframework. The terminal reward function is only supposed to be Borelian. Thevalue function $u$ associated with this problem is generally irregular. Wefirst establish a {\em sub- (resp. super-) optimality principle of dynamicprogramming} involving its {\em upper- (resp. lower-) semicontinuous envelope}$u^*$ (resp. $u_*$). This result, called {\em weak} dynamic programmingprinciple (DPP), extends that obtained in \cite{BT} in the case of a classicalexpectation to the case of an ${\cal E}^f$-expectation and Borelian terminalreward function. Using this {\em weak} DPP, we then prove that $u^*$ (resp.$u_*$) is a {\em viscosity sub- (resp. super-) solution} of a nonlinearHamilton-Jacobi-Bellman variational inequality.
机译:我们在马尔可夫框架中研究了由带跳变的BSDE引起的非线性期望$ {\ cal E} ^ f $下的组合最优控制/停止问题。终端奖励函数仅应为Borelian。与这个问题相关的值函数$ u $通常是不规则的。我们首先建立一个{\ em子((超级)超最优动态规划原理)},涉及其{\ em上半(连续)半连续包络$ u ^ * $($ u _ * $个)。此结果称为{\ em弱}动态编程原理(DPP),将在经典期望的情况下在\ cite {BT}中获得的结果扩展到$ {\ cal E} ^ f $期望和Borelian终端奖励函数的情况。然后使用这个{\ em弱} DPP,我们证明$ u ^ * $(res $。$ u _ * $)是非线性哈密尔顿-雅各比-贝尔曼变分的{\ em粘度子-(res ..超级)解}不等式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号